SINGLE OPTION CORRECT

1. A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the center O at a point Q so that $\mathrm{OQ}=12 \mathrm{~cm}$. Length PQ is
(A) 12 cm
(B) 13 cm
(C) 8.5 cm
(D) $\sqrt{119} \mathrm{~cm}$
2. From a point Q, the length of the tangent to a circle 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is
(a) 7 cm
(b) 12 cm
(c) 15 cm
(d) 24.5 cm
3. In figure, if TP and TQ are the two tangents to a circle with center O . So that $\angle \mathrm{POQ}=110^{\circ}$; then $\angle \mathrm{PTQ}$ is equal to

(a) 60°
(b) 70°
(c) 80°
(d) 90°
4. If tangents $P A$ and $P B$ from a point P to a circle with centre O are inclined to each other at angle of 80°, then $\angle \mathrm{POA}$ is equal to
(a) 50°
(b) 60°
(c) 70°
(d) 80°
5. The length of the tangent from a point A at a circle, of radius 3 cm , is 4 cm . The distance of A from the centre of the circle is
(a) $\sqrt{7} \mathrm{~cm}$
(b) 7 cm
(c) 5 cm
(d) 25 cm
6. PQ is a tangent to a circle with centre O at the point P . If $\triangle \mathrm{OPQ}$ is an isosceles triangle, then $\angle \mathrm{OQP}$ is equal to
(a) 30°
(b) 45°
(c) 60°
(d) 90°
7. Two circles touch each other externally at C and AB is a common tangent to the circles. Then $\angle \mathrm{ACB}=$
(a) 60°
(b) 45°
(c) 30°
(d) 90°
8. ABC is a right angled triangle, right angled at B such that $\mathrm{BC}=6 \mathrm{~cm}$ and $\mathrm{AB}=8 \mathrm{~cm}$. A circle with centre O is inscribed in $\triangle \mathrm{ABC}$. The radius of the circle is
(a) 1 cm
(b) 2 cm
(c) 3 cm
(d) 4 cm
9. PQ is a tangent drawn from a point P to a circle with centre O and QOR is a diameter of the circle such that $\angle \mathrm{POR}=120^{\circ}$, then $\angle \mathrm{OPQ}$ is
(a) 60°
(b) 45°
(c) 30°
(d) 90°
10. $A B$ and $C D$ are two common tangents to circles which touch each other at C. If D lies on $A B$ such that $C D=4 \mathrm{~cm}$, then $A B$ is equal to
(a) 4 cm
(b) 6 cm
(c) 8 cm
(d) 12 cm
11. In a circle of radius 7 cm , tangent PT is drawn from a point P such that $\mathrm{PT}=24 \mathrm{~cm}$. If O is the centre of the circle, then length of $O P$ is
(a) 30 cm
(b) 28 cm
(c) 14 cm
(d) 25 cm
12. A point P is 26 cm away from the centre of a circle and the length of tangent drawn from P to the circle is 24 cm . The radius of the circle is
(a) 8 cm
(b) 10 cm
(c) 12 cm
(d) 14 cm
13. In the given figure, PT is a tangent to the circle with centre O . If $\mathrm{OT}=6 \mathrm{~cm}$ and $\mathrm{OP}=10 \mathrm{~cm}$, then the length of tangent PT is

(a) 8 cm
(b) 12 cm
(c) 10 cm
(d) 16 cm
14. In the given figure, $\triangle A B C$ is circumscribed touching the circle at P, Q, R. If $A P=4 \mathrm{~cm}, B P=6 \mathrm{~cm}, A C=$ 12 cm and $\mathrm{BC}=\mathrm{xcm}$. Then $\mathrm{x}=$?

(a) 10 cm
(b) 6 cm
(c) 14 cm
(d) 18 cm
15. In the given figure, quadrilateral $A B C D$ is circumscribed touching the circle at P, Q, R and S. If $\mathrm{AP}=5 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$, and $\mathrm{CS}=3 \mathrm{~cm}$, length $\mathrm{AB}=$?

(a) 10 cm
(b) 8 cm
(c) 12 cm
(d) 9 cm

SUBJECTIVE PROBLEMS

1. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.
2. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.
3. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm . Find the radius of the circle.
4. Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.
5. A quadrilateral $A B C D$ is drawn to circumscribe a circle in figure. Prove that $A B+C D=A D+B C$
6. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

7. Prove that the parallelogram circumscribing a circle is a rhombus.
8. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
9. In figure, $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B=90^{\circ}$.

10. A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which $B C$ is divided by the point of contact D are of lengths 6 cm and 8 cm respectively in figure. Find the sides $A B$ and $A C$.

11. In figure, a circle touches all the four sides of a quadrilateral $A B C D$ with $A B=6 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$ and $C D$ $=4 \mathrm{~cm}$. Find AD.

12. In figure, $A B C$ is a right angled triangle, right angle at B such that $B C=6 \mathrm{~cm}$ and $A B=8 \mathrm{~cm}$. Find the radius of its incircle.

13. If $A B, A C$ and $P Q$ are tangents in figure, $A n d B=5 \mathrm{~cm}$, find the perimeter of $\triangle A P Q$.

14. In figure, PQ is tangent at a point R of the circle with centre O . If $\angle \mathrm{TRQ}=30^{\circ}$, find the $\mathrm{m} \angle \mathrm{PRS}$.

15. Two tangents TP and TQ are draw to a circle with centre O from an external point T. Prove that $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$

Visit Us: https://www.mathsarc.com

SINGLE OPTION CORRECT

1.
2.

MULTI OPTIONS CORRECT

1.

INTEGER TYPE
1.
2.
3.
4.

